Screening for Antifungal Indigenous Lactobacilli Strains Isolated from Local Fermented Milk for Developing Bioprotective Fermentates and Coatings Based on Acid Whey Protein Concentrate for Fresh Cheese Quality Maintenance
Publikasjonsdetaljer
Tidsskrift : Microorganisms , vol. 11 , p. 1–16–15 , 2023
Utgiver : MDPI
Internasjonale standardnummer
:
Trykt
:
2076-2607
Elektronisk
:
2076-2607
Publikasjonstype : Vitenskapelig artikkel
Sak : 3
Lenker
:
ARKIV
:
hdl.handle.net/11250/3064787
DOI
:
doi.org/10.3390/microorganisms...
Forskningsområder
Råvarekunnskap
Konservering
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
The demand for healthy foods without artificial food additives is constantly increasing. Hence, natural food preservation methods using bioprotective cultures could be an alternative to chemical preservatives. Thus, the main purpose of this work was to screen the indigenous lactobacilli isolated from fermented cow milk for their safety and antifungal activity to select the safe strain with the strongest fungicidal properties for the development of bioprotective acid whey protein concentrate (AWPC) based fermentates and their coatings intended for fresh cheese quality maintenance. Therefore, 12 lactobacilli strains were isolated and identified from raw fermented cow milk as protective cultures. The safety of the stains was determined by applying antibiotic susceptibility, haemolytic and enzymatic evaluation. Only one strain, Lacticaseibacillus paracasei A11, met all safety requirements and demonstrated a broad spectrum of antifungal activity in vitro. The strain was cultivated in AWPC for 48 h and grew well (biomass yield 8 log10 cfu mL−1). L. paracasei A11 AWPC fermentate was used as a vehicle for protective culture in the development of pectin-AWPC-based edible coating. Both the fermentate and coating were tested for their antimicrobial properties on fresh acid-curd cheese. Coating with L. paracasei A11 strain reduced yeast and mould counts by 1.0–1.5 log10 cfu mL−1 (p ≤ 0.001) during cheese storage (14 days), simultaneously preserving its flavour and prolonging the shelf life for six days.