Publisert 2023

Les på engelsk


Tidsskrift : Acta Horticulturae , vol. 1357 , p. 313–318 , 2023

Internasjonale standardnummer :
Trykt : 0567-7572

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Amundsen, Mathias; Aaby, Kjersti; Jaakola, Laura; Schmidt, Gesine; Martinussen, Inger; Hykkerud, Anne Linn



Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune


Lingonberries (Vaccinium vitis-idaea L.) have received much positive attention due to their exotic taste and high phenolic content. These small red fruits grow across Norway, a country with large variations in abiotic and biotic growth conditions. The large variations in abiotic and biotic growth conditions have potential to influence quality and availability of lingonberries. A three-year study (2019-2021) with 64 field plots across Norway have therefore been set up, with the aim of studying the effect of climate and growth conditions on lingonberries. Here, anthocyanin content in berries from the first growth season is presented. Eight locations across Norway (58 to 69°N) with supposed high production potential of lingonberries were selected. Within each location, eight stands (250 m2) with different biotic conditions were chosen. Berries from each sector were lyophilised and extracted with 70% methanol. Phenolic compounds were analysed by HPLC-DAD-MSn, with quantification of anthocyanin at 520 nm and MS used for identification. The three major anthocyanins in Norwegian lingonberries were cyanidin-3-galactoside (69-90%), -arabinoside (6-23%) and 
-glucoside (2-10%). Additionally, small quantities of three other cyanidin glycosides were preliminarily identified. The total content of anthocyanins in lingonberries ranged from approximately 320 to 790 mg 100 g‑1 dw. There appears to be a variation in anthocyanin concentration linked to latitude. However, as the variation was as large within the stands of each location as they were between the locations, different growth factors would also play key parts in synthesis of anthocyanins in lingonberries. Results from analysis of berries collected in 2020 and 2021 are necessary to have the basis to draw a conclusion on how biotic and abiotic factors influence anthocyanin content of lingonberries.


Temasider tilknyttet publikasjonen