Why use component-based methods in sensory science?
Publikasjonsdetaljer
Tidsskrift : Food Quality and Preference , vol. 112 , p. 1–18 , 2023
								
									Internasjonale standardnummer
									:
								
								
																	Trykt
									:
									0950-3293
									
																	Elektronisk
									:
									1873-6343
									
															
Publikasjonstype : Vitenskapelig artikkel
									
										Lenker
										:
									
									
																			DOI
										:
										
																						doi.org/10.1016/j.foodqual.202...
											
										
										
																			ARKIV
										:
										
																						hdl.handle.net/11250/3103577
											
										
										
																	
Forskningsområder
Sensorikk
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
This paper discusses the advantages of using so-called component-based methods in sensory science. For instance, principal component analysis (PCA) and partial least squares (PLS) regression are used widely in the field; we will here discuss these and other methods for handling one block of data, as well as several blocks of data. Component-based methods all share a common feature: they define linear combinations of the variables to achieve data compression, interpretation, and prediction. The common properties of the component-based methods are listed and their advantages illustrated by examples. The paper equips practitioners with a list of solid and concrete arguments for using this methodology.
