Selection of principal variables through a modified Gram–Schmidt process with and without supervision
Publikasjonsdetaljer
Tidsskrift : Journal of Chemometrics , vol. 37 , p. 1–19 , 2023
								
									Internasjonale standardnummer
									:
								
								
																	Trykt
									:
									0886-9383
									
																	Elektronisk
									:
									1099-128X
									
															
Publikasjonstype : Vitenskapelig artikkel
Sak : 10
									
										Lenker
										:
									
									
																			DOI
										:
										
																						doi.org/10.1002/cem.3510
											
										
										
																			ARKIV
										:
										
																						hdl.handle.net/11250/3084015
											
										
										
																	
Forskningsområder
Kvalitet og målemetoder
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
In various situations requiring empirical model building from highly multivariate measurements, modelling based on partial least squares regression (PLSR) may often provide efficient low-dimensional model solutions. In unsupervised situations, the same may be true for principal component analysis (PCA). In both cases, however, it is also of interest to identify subsets of the measured variables useful for obtaining sparser but still comparable models without significant loss of information and performance. In the present paper, we propose a voting approach for sparse overall maximisation of variance analogous to PCA and a similar alternative for deriving sparse regression models influenced closely related to the PLSR method. Both cases yield pivoting strategies for a modified Gram–Schmidt process and its corresponding (partial) QRfactorisation of the underlying data matrix to manage the variable selection process. The proposed methods include score and loading plot possibilities that are acknowledged for providing efficient interpretations of the related PCA and PLS models in chemometric applications.