Publisert 2004

Les på engelsk

Publikasjonsdetaljer

Tidsskrift : Journal of Chemometrics , vol. 18 , p. 422–429–8 , 2004

Internasjonale standardnummer :
Trykt : 0886-9383
Elektronisk : 1099-128X

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Mevik, Bjørn-Helge; Cederkvist, Henrik René

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no

Sammendrag

This paper presents results from simulations based on real data, comparing several competing mean squared error of prediction (MSEP) estimators on principal component regression (PCR) and partial least squares regression (PLSR): leave-one-out cross-validation, K-fold and adjusted K-fold crossvalidation, the ordinary bootstrap estimate, the bootstrap smoothed cross-validation (BCV) estimate and the 0.632 bootstrap estimate. The overall performance of the estimators is compared in terms of their bias, variance and squared error. The results indicate that the 0.632 estimate and leave-one-out cross-validation are preferable when one can afford the computation. Otherwise adjusted 5- or 10-fold cross-validation are good candidates because of theircomputational efficiency.