Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii
Publikasjonsdetaljer
Tidsskrift : eLIFE , vol. 6 , 2017
Internasjonale standardnummer
:
Trykt
:
2050-084X
Elektronisk
:
2050-084X
Publikasjonstype : Vitenskapelig artikkel
Lenker
:
ARKIV
:
http://hdl.handle.net/11250/24...
DOI
:
doi.org/10.7554/eLife.23001
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane- type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.