A variable selection strategy for supervised classification with continuous spectroscopi data
Publikasjonsdetaljer
Tidsskrift : Journal of Chemometrics , vol. 18 , p. 53–61–9 , 2004
Internasjonale standardnummer
:
Trykt
:
0886-9383
Elektronisk
:
1099-128X
Publikasjonstype : Vitenskapelig artikkel
Sak : 2
Lenker
:
OMTALE
:
http://www3.interscience.wiley...
DOI
:
doi.org/10.1002/cem.836
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
In this paper we present a new variable selection method designed for classification problems where the X-data are discretely sampled from continuous curves. For such data, the loading weight vectors of a PLS discriminant analysis inherits the continuous behavior, making the idea of local peaks meaningful. For successive components the local peaks are checked for importance before entering the set of selected variables. Our examples with NIR/NIT show that substantial simplification of the X-space can be obtained without loss in classification power when compared to "benchmark full spectrum" methods.