Publisert 2006

Les på engelsk


Tidsskrift : Journal of Fish Biology , vol. 69 , p. 1396–1426–31 , 2006

Utgiver : John Wiley & Sons

Internasjonale standardnummer :
Trykt : 0022-1112
Elektronisk : 1095-8649

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Bakke-McKellep, Anne-Marie; Refstie, Ståle; Stefansson, Sigurd O.; Vanthanouvong, V; Roomans, G; Hemre, Gro Ingunn; Krogdahl, Åshild

Sak : 5

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune


Atlantic salmon Salmo salar juveniles were fed either fishmeal-based diets (FM) or diets in which soybean meal (SBM) partly replaced the FM from first feeding on. The fish were kept at continuous daylight during the juvenile stage. During the last 3 weeks before reaching 100 g body mass, all fish were subjected to 12L:12D. Starting at 100 g body mass, groups of 60 fish from each feeding background were subjected to continuous light for 12 weeks (short winter), or a square-wave photoperiod cycle to stimulate parr to smolt transformation with 8L:16D during the first 6 weeks, and then continuous light during the last 6 weeks (long winter). After the 12 weeks, 20 fish from each treatment were subjected to 0, 24 or 96 h seawater exposure at a water salinity of 34. Hypo-osmoregulatory ability at seawater exposure was assessed by mortality, intestinal pathology, plasma ion concentrations and osmolality, gill Na+/K+-ATPase activity and element concentrations in the cytoplasm of distal intestinal enterocytes using X-ray microanalysis. The hypo-osmoregulatory capacity was higher in fish kept at short winter than at long winter, apparently due to more rapid development of gill Na+/K+-ATPase activity. Fish fed SBM suffered typical soybean meal-induced histological alterations of the distal intestine and apparent reductions in digestive function in the more proximal gastrointestinal regions. The net osmoregulatory capacity of these fish was maintained, as indicated by higher gill Na+/K+-ATPase activity and lower plasma Na+, Ca2+ and osmolality compared to the FM-fed fish. Thus, feeding SBM did not impair the hypo-osmoregulatory ability of the Atlantic salmon following seawater exposure. (c) 2006 The Authors Journal compilation