Publisert 2002

Les på engelsk


Tidsskrift : Fish and Shellfish Immunology , vol. 12 , p. 371–385 , 2002

Utgiver : Elsevier

Internasjonale standardnummer :
Trykt : 1050-4648
Elektronisk : 1095-9947

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Haug, Tor; Kjuul, Anita K.; Stensvåg, Klara; Sandsdalen, Erling; Styrvold, Olaf B.

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune


A search for antibacterial activity in different body-parts of Pandalus borealis (northern shrimp), Pagurus bernhardus (hermit crab), Hyas araneus (spider crab) and Paralithodes camtschatica (king crab) was conducted. Dried samples were extracted with 60% (v/v) acetonitrile, containing 0.1% (v/v) trifluoroacetic acid, and further extracted and concentrated on C18 cartridges. Eluates from the solid phase extraction were tested for antibacterial, lysozyme and haemolytic activity. Antibacterial activity against Escherichia coli, Vibrio anguillarum, Corynebacterium glutamicum and Staphylococcus aureus was detected in extracts from several tissues in all species tested, but mainly in the haemolymph and haemocyte extracts. V. anguilarum and C. glutamicum were generally the most sensitive microorganisms. In P. borealis and P. bernhardus most of the active fractions were not affected by proteinase K treatment, while in H. araneus and P. camtschatica most fractions were sensitive to proteinase K treatment, indicating antibacterial factors of proteinaceous nature. In P. bernhardus the active fractions were generally heat labile, whereas in H. araneus the activities were resistant to heat. Differences between active extracts regarding hydrophobicity and sensitivity for heat and proteinase K treatment indicate that several compounds are responsible for the antibacterial activities detected. Lysozyme-like activity could be detected in some fractions and haemolytic activity against human red blood cells could be detected in haemolymph/haemocyte and exoskeleton extracts from all species tested.