Optimised score plot by principal components of predictions
Publikasjonsdetaljer
Tidsskrift : Chemometrics and Intelligent Laboratory Systems , vol. 68 , p. 61–74 , 2003
								
									Internasjonale standardnummer
									:
								
								
																	Trykt
									:
									0169-7439
									
																	Elektronisk
									:
									1873-3239
									
															
Publikasjonstype : Vitenskapelig artikkel
Sak : 1-2
									
										Lenker
										:
									
									
																			DOI
										:
										
																						doi.org/10.1016/S0169-7439(03)...
											
										
										
																	
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
A common problem in statistics/chemometrics is to relate two data matrices (X and Y) to each other, with the purpose of either prediction or interpretation. Usually, one is interested in understanding which directions in Y-space that can be predicted by which directions in X-space. Several methods exist for this, for instance, PLS regression and canonical correlation. The present paper presents a new plot for visualising the relationship between X and Y. The plot is based on a decomposition of the X-space that is optimal with respect to Y-variance. The new procedure can accompany any regression method. (C) 2003 Elsevier Science B.V. All rights reserved.