Assessing the performance of classifiers when classes arise from a continuum
Publikasjonsdetaljer
Tidsskrift : Computational Statistics & Data Analysis , vol. 46 , p. 689–705 , 2004
Utgiver : Elsevier
Internasjonale standardnummer
:
Trykt
:
0167-9473
Elektronisk
:
1872-7352
Publikasjonstype : Vitenskapelig artikkel
Lenker
:
DOI
:
doi.org/10.1016/j.csda.2003.09...
Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.
Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no
Sammendrag
The situation where classes arise by dividing the range of a continuous response variable into intervals is discussed. The focus is on assessing the performance of classifiers. Due to the underlying continuum, all misclassifications are not equally grave. The probability of misclassification (pmc) is not optimal in this situation. An alternative performance measure, the squared error rate (sqerr) is proposed. It is related to the mean squared error of regression, and penalises misclassifications according to their severity. Also, because of measurement errors in the response variable, there are misallocated class labels in data sets used for training and testing. Estimates of the pmc and the sqerr are developed for this situation. The estimates are tested and compared on a real data set and in a simulation.