Publisert 2006

Les på engelsk


Tidsskrift : Aquaculture , vol. 261 , p. 215–224 , 2006

Utgiver : Elsevier

Internasjonale standardnummer :
Trykt : 0044-8486
Elektronisk : 1873-5622

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Ytrestøyl, Trine; Struksnæs, G.; Rørvik, Kjell-Arne; Koppe, Wolfgang; Bjerkeng, Bjørn

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune


The objective of this study was to determine the effect of feed intake on the apparent digestibility coefficient (ADC) of astaxanthin including the major geometrical E/Z-isomers in Atlantic salmon (Salmo salar). Atlantic salmon (50 per pen, initial weight 2 kg) were kept in 125 m(3) sea pens equipped with an excess feed collection system to monitor and quantify accurate feed intake, and subjected to three treatments in triplicate. All salmon were fed the same diet supplemented with 47 mg astaxanthin per kg. Two treatments were fed full or restricted rations corresponding to 100 or 40% of apparent satiation, respectively, with a switch in ration between two consecutive feeding periods (14 and 3 d, respectively), whereas the control treatment was fed to 100% of apparent satiation during both periods. The corresponding feed intakes were 0.45 and 0.16% of biomass for salmon fed 100% or 40% of apparent satiation, respectively. Faeces were collected by stripping at the end of each feeding period and ADCs of astaxanthin were determined by an indirect method using yttrium oxide (Y2O3) as an indigestible marker. Feed intake and astaxanthin ADC were negatively correlated (R-2=0.64;p=0.0001). Astaxanthin ADC was 1.5 times higher at the low compared to the high ration level (p < 0.05), but due to the low feed intake the total amount of digested astaxanthin was only about 50% of that in fish fed to satiation. The ADCs of the all-E and 13Z-isomers of astaxanthin were similar and considerably higher than for 9Z-astaxanthin (p < 0.05). The amount of digested astaxanthin/TGC (estimated thermal growth coefficient) decreased with increasing feed intake. Estimates of astaxanthin retention indicated that a higher feed intake cause a lower muscle concentration of astaxanthin compared to that obtained at low feed intakes due to the lower digestibility. Blood samples were collected at the end of the second feeding period to examine possible relationships between plasma carotenoids, feed intake and ADC. Salmon without faeces in the hindgut had a lower plasma astaxanthin concentration compared to salmon with faeces in the hindgut (p < 0.05). In conclusion, feed intake and astaxanthin ADC are negatively correlated, and may thus explain reductions in muscle retention of Atlantic salmon. (c) 2006 Elsevier B.V. All rights reserved.