Publisert 2013

Les på engelsk

Publikasjonsdetaljer

Tidsskrift : Journal of Experimental Botany , vol. 64 , p. 1039–1048–10 , 2013

Utgiver : Oxford University Press

Internasjonale standardnummer :
Trykt : 0022-0957
Elektronisk : 1460-2431

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Huseby, Stine; Koprivova, Anna; Lee, Bok-Rye; Saha, Shikha; Mithen, Richard; Wold, Anne-Berit; Bengtsson, Gunnar; Kopriva, Stanislav

Sak : 4

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no

Sammendrag

Glucosinolates are a major class of sulphur-containing secondary metabolites involved in plant defence against pathogens. Recently many regulatory links between glucosinolate biosynthesis and sulphate assimilation were established. Since sulphate assimilation undergoes diurnal rhythm and is light regulated, this study analysed whether the same is true for glucosinolate biosynthesis. The levels of glucosinolates and glutathione were found to be higher during the day than during the night. This agreed with variation in sulphate uptake as well as activity of the key enzyme of the sulphate assimilation pathway, adenosine 5’-phosphosulphate reductase. Correspondingly, the flux through sulphate assimilation was higher during the day than during the night, with the maximum flux through primary assimilation preceding maximal incorporation into glucosinolates. Prolonged darkness resulted in a strong reduction in glucosinolate content. Re-illumination of such dark-adapted plants induced accumulation of mRNA for many genes of glucosinolate biosynthesis, leading to increased glucosinolate biosynthesis. The light regulation of the glucosinolate synthesis genes as well as many genes of primary sulphate assimilation was controlled at least partly by the LONG HYPOCOTYL5 (HY5) transcription regulator. Thus, glucosinolate biosynthesis is highly co-regulated with sulphate assimilation.