Gå til hovedinnhold
Publisert 2020

Read in English

Publikasjonsdetaljer

Tidsskrift : Antioxidants , vol. 9 , p. 19 , 2020

Utgiver : MDPI

Internasjonale standardnummer :
Trykt : 2076-3921

Publikasjonstype : Vitenskapelig artikkel

Bidragsytere : Lazado, Carlo C.; Voldvik, Vibeke; Breiland, Mette Serine W; Osorio, Joao; Hansen, Marianne H. S.; Krasnov, Aleksei

Har du spørsmål om noe vedrørende publikasjonen, kan du kontakte Nofimas bibliotekleder.

Kjetil Aune
Bibliotekleder
kjetil.aune@nofima.no

Sammendrag

The olfactory organs of fish have vital functions for chemosensory and defence. Though there have been some ground-breaking discoveries of their involvement in immunity against pathogens in recent years, little is known about how they respond to non-infectious agents, such as exogenous oxidants, which fish encounter regularly. To this end, we employed Atlantic salmon (Salmo salar) as a model to study the molecular responses at the nasal olfactory mucosa of a teleost fish when challenged with oxidants. Microarray analysis was employed to unravel the transcriptional changes at the nasal olfactory mucosa following 2 types of in vivo exposure to peracetic acid (PAA), a highly potent oxidative agent commonly used in aquaculture: Trial 1: periodic and low dose (1 ppm, every 3 days over 45 days) to simulate a routine disinfection; and Trial 2: less frequent and high dose (10 ppm for 30 min, every 15 days, 3 times) to mimic a bath treatment. Further, leukocytes from the olfactory organ were isolated and exposed to PAA, as well as to hydrogen peroxide (H2O2) and acetic acid (AA) – the two other components of PAA trade products – to perform targeted cellular and molecular response profiling. In the first trial, microarrays identified 32 differentially expressed genes (DEG) after a 45-day oxidant exposure. Erythrocyte–specific genes were overly represented and substantially upregulated following exogenous oxidant exposure. In Trial 2, in which a higher dose was administered, 62 DEGs were identified, over 80% of which were significantly upregulated after exposure. Genes involved in immune response, redox balance and stress, maintenance of cellular integrity and extracellular matrix were markedly affected by the oxidant. All chemical stimuli (i.e. PAA, H2O2, AA) significantly affected the proliferation of nasal leukocytes, with indications of recovery observed in PAA- and H2O2-exposed cells. The migration of nasal leukocytes was promoted by H2O2, but not much by PAA and AA. The three chemical oxidative stressors triggered oxidative stress in nasal leukocytes as indicated by an increase in the intracellular reactive oxygen species level. This resulted in the mobilisation of antioxidant defences in the nasal leukocytes as shown by the upregulation of crucial genes for this response network. Though qPCR revealed changes in the expression of selected cytokines and heat shock protein genes following in vitro challenge, the responses were stochastic. The results from the study advance our understanding of the role that the nasal olfactory mucosa plays in host defence, particularly towards oxidative chemical stressors.

Kontaktpersoner: