Academic article

Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp

Langsrud, Solveig; Sundheim, G.; Borgmann-Strahsen, R.

Publication details

Journal: Journal of Applied Microbiology, vol. 95, p. 874–882, 2003

International Standard Numbers:
Printed: 1364-5072
Electronic: 1365-2672

Open Access: none


Aims: To determine the sensitivity of a strain used for disinfectants testing (Pseudomonas aeruginosa ATCC 15442) and food-associated isolates to benzalkonium chloride and didecyl dimethylammonium chloride (DDAC). To determine whether the increase in bacterial resistance after adaptation to DDAC can be associated with phenotypic changes. To test the activity of alternative disinfectants to eliminate resistant Pseudomonas spp.

Methods and Results: Pseudomonas aeruginosa ATCC 15442 was among the most resistant strains tested using a bactericidal suspension test. Growth of a sensitive Ps. fluorescens in gradually higher concentrations of DDAC resulted in stable higher resistance and to some cross-resistance to several antibacterial agents, with the exception of disinfectants containing chloramine T, glutaraldehyde or peracetic acid. It was shown by microscopy that adaptation was followed by loss of flagella, and slime formation. Removal of the slime by sodium dodecyl sulphate resulted in partial loss of the acquired resistance.

Conclusions: Pseudomonas spp. may adapt to survive against higher concentrations of quaternary ammonium compounds (QACs), but resistant strains can be eliminated with chemically unrelated disinfectants.

Significance and Impact of the Study: The work supports the rotation of disinfectants in food processing environments for avoiding the development of bacterial resistance to QACs. The alternating disinfectants should be chosen carefully, because of possible cross-resistance.