Academic article

Effects of Environmental Factors on Edible Oil Quality of Organically Grown Camelina sativa

Kirkhus, Bente; Lundon, Aina; Haugen, John-Erik; Vogt, Kjell gjermund; Borge, Grethe Iren Andersen; Henriksen, Britt

Publication details

Journal: Journal of Agricultural and Food Chemistry, vol. 61, p. 3179–3185–7, 2013

Publisher: American Chemical Society (ACS)

Issue: 13

International Standard Numbers:
Printed: 0021-8561
Electronic: 1520-5118

Open Access: none

Links:
DOI

The aim of the present study was to evaluate the potential for the production of edible oil from organically grown
camelina (Camelina sativa L. Crantz), focusing on the influence of environmental factors on nutritional quality parameters. Field experiments with precrop barley were conducted in Norway in the growing seasons 2007, 2008, and 2009. Trials were fully randomized with two levels of nitrogen (N) fertilization, 0 and 120 kg total N ha − 1, and two levels of sulfur (S) fertilization, 0 and 20 kg total S ha − 1. Weather conditions, that is, temperature and precipitation, were recorded. Additional experiments were performed in the years 2008 and 2009 to evaluate the effects of replacing precrop barley with precrop pea. Seed oil content was measured by near-infrared transmittance, and crude oil compositions of fatty acids, phytosterols, tocopherols, and phospholipids were analyzed by chromatography and mass spectrometry. Results showed significant seasonal variations in seed oil content and
oil composition of fatty acids, tocopherols, phytosterols, and phospholipids that to a great extent could be explained by the variations in weather conditions. Furthermore, significant effects of N fertilization were observed. Seed oil content decreased at the highest level of N fertilization, whereas the oil concentrations of α -linolenic acid (18:3n-3), erucic acid (22:1n-9),
tocopherols, and campesterol increased. Pea compared to barley as precrop also increased the 18:3n-3 content of oil. S fertilization had little impact on oil composition, but an increase in tocopherols and a decrease in brassicasterol were observed. In conclusion, organically grown camelina seems to be well suited for the production of edible oil. Variations in nutritional quality
parameters were generally small, but significantly influenced by season and fertilization.